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Abstract
We introduce a point-line incidence geometry in which the commutation
relations of the real Pauli group of multiple qubits are fully encoded. Its
points are pairs of Pauli operators differing in sign, and each line contains
three pairwise commuting operators any of which is the product of the other
two (up to sign). We study the properties of its Veldkamp space enabling us
to identify subsets of operators which are distinguished from the geometric
point of view. These are geometric hyperplanes and pairwise intersections.
Among the geometric hyperplanes, one can find the set of self-dual operators
with respect to the Wootters spin-flip operation well known from studies
concerning multiqubit entanglement measures. In the two- and three-qubit
cases, a class of hyperplanes gives rise to Mermin squares and other generalized
quadrangles. In the three-qubit case, the hyperplane with points corresponding
to the 27 Wootters self-dual operators is just the underlying geometry of the
E6(6) symmetric entropy formula describing black holes and strings in five
dimensions.

PACS numbers: 03.65.Aa, 02.40.Dr, 0365.Ud

1. Introduction

The importance of generalized Pauli groups in the study of quantum systems with finite-
dimensional Hilbert spaces is well known. The main application of this group within the field
of quantum information is related to quantum error correcting codes [1]. The construction of
such codes is naturally facilitated within the so-called stabilizer formalism [1–3]. Here it is
recognized that the basic properties of error correcting codes are related to the fact that two
operators in the Pauli group are either commuting or anticommuting. This property is encoded
into the structure of an Abelian group (the central quotient of the Pauli group), with a natural
symplectic structure. As a next step it was later realized that this commutation algebra for a
multiqubit system is encoded in the totally isotropic subspaces of this underlying symplectic
vector space, that is, a symplectic polar space of order 2 [4].

Finite geometric concepts in connection with multiqubit Pauli groups also arose in
different contexts, e.g. in connection with discrete phase spaces [5], topological quantum
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computation [6] and notably in the so-called black hole analogy [7, 8]. In the latter context, it
was shown that there is a mathematical connection between the Bekenstein–Hawking entropy
formula of black holes and black strings and certain finite geometric objects related to the
three-qubit real Pauli group. (For a review of the black hole analogy, see the paper of Borsten
et al [9] and references therein.) More precisely, in a previous paper [8] an explicit connection
has been established between the structure of one type of the geometric hyperplanes of the
split Cayley hexagon of order 2 based on the Pauli group for three qubits and the entropy
formula for five-dimensional black hole and string solutions well known to string theorists.
Apart from their use in string theory these studies also emphasized an important connection
between the structure of incidence geometries and their finite automorphism groups realized
in terms of quantum gates of quantum information theory [7, 8]. These spirit groups, such as
the Weyl groups W(E6) and W(E7) and the simple group PSL(2, 7) as finite subgroups of the
infinite discrete U-duality group known from string theory, have been linked to the Clifford
group of quantum computation [7, 8, 10].

The aim of this paper is twofold. Firstly, we would like to draw the attention to certain
subsets of the n-qubit-generalized Pauli group which are distinguished from the finite geometric
point of view. These are points and lines of the Veldkamp space of an incidence geometry
naturally associated with the real Pauli group of n qubits. Some of them have a clear quantum
information theoretic meaning in terms of the Pauli operators, but for the others this meaning
is yet to be found. Secondly, since these subsets as geometric hyperplanes of our incidence
geometry are arising quite naturally also in the black hole analogy, we would like to provide
a rigorous mathematical frame for these interesting constructions. Such considerations might
possibly pave the way for a deeper understanding of this fascinating topic.

The organization of the paper is as follows. In section 2, we fix our conventions
concerning the incidence geometry of the Pauli group. Here we introduce the important
notion of a geometric hyperplane. In section 3, besides providing the basic properties of our
incidence geometry, we prove that in this geometry no geometric hyperplane is contained in
the other. We also show that a pair of geometric hyperplanes naturally gives rise to a third
one. These considerations lead us, in section 4, to initiate a detailed study of the structure
of the Veldkamp space, another incidence geometry associated with our initial one, with its
points being the geometric hyperplanes. Here we provide an algebraic characterization for
the Veldkamp points and establish different relationships between them. In section 5, we
study the orbits of the action of the symplectic group on the hyperplanes, with the result
that there are five types of Veldkamp lines. In section 6 by investigating the intersection
properties of these lines, we obtain a full classification for them. To put these abstract
considerations into physical context, we will examine some important and special cases in
section 7. The conclusions are left for section 8.

2. The incidence geometry of the Pauli group

First we briefly summarize the relevant definitions from finite geometry. These can be found in
e.g. [11]. The basic object we will be working with is the incidence structure whose definition
is given here.

Definition. The triple (P,L, I) is called an incidence structure (or point-line incidence
geometry) if P and L are disjoint sets and I ⊆ P × L is a relation. The elements of P and L
are called points and lines, respectively. We say that p ∈ P is incident with l ∈ L if (p, l) ∈ I .

The concept of an incidence structure is quite general. We may restrict ourselves to those
that are called simple, having the property that no two lines are incident with exactly the same
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points. In simple incidence structures the lines may be identified with the sets of points they
are incident with, so we can think of these as a set P together with a subset L ⊆ 2P of the
power set of P. Then (P,L,∈) is an incidence structure in the usual sense. In what follows
we will do this identification, i.e. the points incident with a line will be called the elements of
that line.

In a point-line geometry, there are distinguished sets of points called geometric
hyperplanes [12].

Definition. Let (P,L, I) be an incidence structure. A subset H ⊆ P of P is called a
geometric hyperplane if the following two conditions hold:

(H1) (∀l ∈ L) : (|H ∩ l| = 1 or l ⊆ H)

(H2) H �= P .

Clearly, the subsets H satisfying only (H1) are exactly the geometric hyperplanes and the
set P of all points.

We will associate a point-line incidence geometry with the generalized real Pauli group
of n qubits for all n. This group can be constructed in the following way. Let us define the
2 × 2 matrices

X =
[

0 1
1 0

]
Z =

[
1 0
0 −1

]
. (1)

Observe that these matrices satisfy X2 = Z2 = I , where I is the 2 × 2 identity matrix. The
product of the two will be denoted by Y = ZX = −XZ. The n-qubit real Pauli group is
the subgroup of GL(2n, R) consisting of the n-fold tensor (Kronecker) products of these four
matrices and their negatives. The shorthand notation AB . . . C will be used for the tensor
product A ⊗ B ⊗ · · · ⊗ C of one-qubit Pauli group elements A,B, . . . , C, i.e. we will omit
the tensor product sign ⊗. The center of this group is the same as its commutator subgroup
and contains only the identity element and its negative (II . . . I and −II . . . I ).

It was shown [3, 13] that the central quotient of the Pauli group has the structure of a
symplectic vector space over the field with two elements. The dimension of this vector space
is 2n, and as the center of the Pauli group contains only the identity matrix and its negative,
the vector addition corresponds to matrix multiplication up to sign. The symplectic form is
induced by the commutator and has value 0 if (arbitrary preimages of) the two arguments
commute and a value of 1 if they anticommute.

Elements of this vector space will be denoted by their representatives in the Pauli group;
for the zero vector we will simply use 0. Using the ordered basis consisting of elements
containing exactly one Z or X and no Ys, we will identify this space with Z

2n
2 in the following

way:

I . . . I IX ↔ (0, 0, 0, 0, . . . , 0, 1)

I . . . I IZ ↔ (0, 0, 0, 0, . . . , 1, 0)

...

XII . . . I ↔ (0, 1, 0, 0, . . . , 0, 0)

ZII . . . I ↔ (1, 0, 0, 0, . . . , 0, 0).

(2)
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In this basis, the matrix of the symplectic form is of the form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0
1 0 0 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Note that we are working in characteristic (2); therefore, every alternating matrix is also
symmetric. The symplectic form and the symplectic vector space

(
Z

2n
2 , 〈·, ·〉) will be denoted

by 〈·, ·〉 and Vn, respectively.
Recall that the projective space PG(2n−1, 2) consists of the nonzero subspaces of the 2n-

dimensional vector space over the two-element field Z2. The points of the projective space are
one-dimensional subspaces of the vector space, and more generally, k-dimensional subspaces
of the vector space are (k − 1)-dimensional subspaces of the corresponding projective space.

A subspace of a symplectic vector space (and also the subspace in the corresponding
projective space) is called isotropic if there is a vector in it which is orthogonal to the whole
subspace, and totally isotropic if the subspace is orthogonal to itself. In the case of one- and
two-dimensional (linear) subspaces, the two notions coincide.

Our incidence geometry consists of the one- and two-dimensional isotropic subspaces,
i.e. the points and isotropic lines of the projective space PG(2n − 1, 2). The collinearity
graph of this geometry was studied in [14]. Since the multiplicative group of the invertible
elements in the two-element field is trivial, the points of this projective space can be identified
with nonzero vectors. For the later reference, we present here the precise definition using our
conventions.

Definition. Let n ∈ N + 1 be a positive integer and Vn be the symplectic Z2-linear space as
above. The incidence structure Gn of the n-qubit-generalized Pauli group is (P,L,∈), where
P = Vn \ {0},

L = {{a, b, a + b}|a, b ∈ P, a �= b, 〈a, b〉 = 0}, (4)

and ∈ is the set theoretic membership relation.

In the language of Pauli operators, we can say that points of this incidence geometry are
the pairs of generalized Pauli operators differing only in a factor of −1 except for the identity
element and its negative. On every line, there are three points which are represented by three
pairwise commuting operators any two of which have the third as their product (up to sign).

Our aim will be to find the geometric hyperplanes of the above defined incidence geometry
and to interpret them as special subsets of the real generalized Pauli group.

3. Basic properties

Firstly, we calculate the cardinalities of the point, line sets and the number of lines incident
with one point. Since points in Gn = (P,L,∈) are identified with nonzero vectors of Vn, it
follows that

|P | = 22n − 1 = 4n − 1. (5)

The points collinear with a given point x are

Cx = {p ∈ P |〈x, p〉 = 0} = {p ∈ Vn|〈x, p〉 = 0} \ {0}. (6)
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In other words, Cx is precisely the symplectic complement of the subspace spanned by x minus
the zero vector. Hence, |Cx | = 22n−1 −1. Apart from x ∈ Cx , every element determines a line
in Gn passing through x, and every such line is represented by two elements of Cx. It follows
that the number of lines incident with a given point is 22n−2 − 1 = 4n−1 − 1. The total number
of lines is the product of |P | and the latter number divided by the number of points on a line:

|L| = (4n − 1)(4n−1 − 1)

3
. (7)

As the next step, we derive some general properties of geometric hyperplanes of Gn. In what
follows, we exclude G1 from our consideration in some of the propositions as it is a degenerate
case containing no lines at all. We have the following lower bound on the cardinality of a
geometric hyperplane.

Lemma 1. Let n ∈ N + 2, Gn = (P,L,∈) and H ⊆ P satisfying (H1). Then the inequality

|P |
3

� |H | (8)

holds.

Proof. A subset H ⊆ P satisfying (H1) must contain at least one point of every line.
Since one point is incident with 4n−1 − 1 lines, |H | points can contain points from at most
|H |(4n−1 − 1) lines. Comparing this with the total number of lines, one obtains

|H |(4n−1 − 1) � |L| = (4n − 1)(4n−1 − 1)

3
= |P |(4n−1 − 1)

3
(9)

which implies the statement since 4n−1 − 1 > 0 for n � 2. �

Remark. For n = 1 the statement does not hold: the empty set is a geometric hyperplane
in G1.

Denoting the number of lines intersecting H in 1 point by N1 and the number of lines fully
contained in H by N2 one can write

|H | · (4n−1 − 1) = N1 + 3N2 (10)

and obviously N1 + N2 = |L|. Solving this system of equations one obtains the formula

N2 = 1

2
(4n−1 − 1)

(
|H | − |P |

3

)
(11)

for the number of lines fully contained in a hyperplane. Since this must be non-negative, this
also yields an alternative proof for the lemma above.

We now give a lower bound on the difference of cardinalities of two subsets of P satisfying
(H1) such that one is contained in the other.

Lemma 2. Let n ∈ N + 2, Gn = (P,L,∈) and suppose that A ⊂ B ⊆ P are two subsets of
P satisfying (H1). Then

3

8
4n � |B \ A|. (12)

Proof. For all p ∈ P , let Np = Cp \ {p} denote the set of points collinear with but not equal
to p, and for a collinear pair of points p and q let Npq = Cp ∩ Cq \ {p, q, p + q} be the set
of points collinear with all of the points of the line containing p and q minus the points of the
line itself. Straightforward calculation shows that |Np| = 22n−1 − 2, |Nx ∩ Ny | = 22n−2 − 3
and |Npq | = 22n−2 − 4.
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Figure 1. The three possible configurations of a point z incident with at least one of two given
points x and y.

Let x be an element of the difference set B \ A, and pick a line passing through x. Since
A and B both satisfy (H1) and x is contained in B but not in A, exactly one of the two other
points on this line is in A and the third point y is contained in B.

Similar reasoning holds for every line passing through x or y, i.e. of each of these lines
exactly one point is contained in A, and the whole lines are contained in B. For a point z ∈ A on
one of these lines but not on the line {x, y, x + y}, there are three different possibilities. Either
z is collinear with precisely one of x or y or it is collinear with both. These cases are illustrated
in figure 1 (filled and empty circles correspond to points of A and B \ A, respectively).

In the first two cases, B must also contain x + z or y + z, respectively. There are

(|Nx \ Ny | − 1)

2
+

(|Ny \ Nx | − 1)

2
(13)

such points, and they correspond to the same number of points in B \ A.
In the latter case, when z is collinear with both x and y, it is also collinear with x + y, and

this implies that the points {x, y, z, x + y, x + z, y + z, x + y + z} together with the lines which
are subsets of this point set form a Fano plane. Then the line {x + y, z, x + y + z} is in A,
and the points x + z and y + z are outside A. Since one such Fano plane contains four points
outside the line {x, y, x + y}, it follows that the number of them is

|Nxy |
4

. (14)

Each Fano plane containing {x, y, x + y} gives rise to two points in B \ A, which means that

|B \ A| � 2 +
(|Nx \ Ny | − 1)

2
+

(|Ny \ Nx | − 1)

2
+ 2 · |Nxy |

4

= 2 + (22n−1 − 2) − (22n−2 − 3) − 1 +
22n−2 − 4

2

= 3

8
4n. (15)

�

Remark. Again, n � 2 is needed. In G1, all proper subsets of P are geometric hyperplanes
allowing the difference to consist of a single element, but 3

8 41 = 3
2 > 1.

Now we are ready to prove an important fact about the geometric hyperplanes of Gn

(n � 2).

Theorem 1. Let n ∈ N + 2, Gn = (P,L,∈) and suppose that A,B ⊂ P are two geometric
hyperplanes. Then A ⊆ B implies A = B, i.e. no geometric hyperplane is contained in
another one.
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Proof. Suppose that A ⊂ B are geometric hyperplanes, one of which is a proper subset of
the other. Then by lemma 1, we have that

4n − 1

3
� |A|. (16)

But since A ⊂ B ⊆ P and B ⊂ P ⊆ P are two pairs of sets satisfying the conditions of
lemma 2, we also have

|P | = |A| + |B \ A| + |P \ B|
� 4n − 1

3
+ 2 · 3

8
4n

= 13

12
4n − 1

3
, (17)

which contradicts equation (5). �

In our incidence geometry every line contains three points. This implies that a pair of
geometric hyperplanes (A,B) gives rise to a third one, the complement of their symmetric
difference which will be denoted by A � B:

Lemma 3. Suppose that A �= B are geometric hyperplanes in Gn = (P,L,∈) where n � 1.
Then the set

A � B := A�B = (A ∩ B) ∪ (A ∩ B) = A�B (18)

(where � denotes the symmetric difference and · = P \· is the complement) is also a geometric
hyperplane.

Proof. Since A �= B, the complement of the symmetric difference is not P.
We have to show that given a line l ∈ L, the set l∩(A�B) has an odd number of elements

if l ∩ A and l ∩ B do so:

|l ∩ (A � B)| = |l ∩ A ∩ B| + |l ∩ (P \ (A ∪ B))|
= |l ∩ A ∩ B| + |l \ (A ∪ B)|. (19)

If any of A and B contains l then the latter term is 0, and the first term equals |l ∩ A| or |l ∩ B|
both of which are odd.

If both of A and B meet l in a single point then either these points coincide or they are
different points of l. In the first case, the first term is equal to 1 and the second equals 2, and
in the second case the first term equals 0 and the second is |l| − 2 = 1. �

A simple observation about this operation is that

A ∩ (A � B) = A ∩ ((A ∩ B) ∪ (A ∩ B)

= A ∩ B (20)

and similarly for B ∩ (A � B). Moreover, any two of the triple {A,B,A � B} determine the
third one, since

A � (A � B) = A�A�B

= A�(A�B)

= B. (21)

In fact, � makes the set of subsets of P satisfying (H1) a Z2-linear space with the set P as the
zero vector.
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4. The Veldkamp space

With certain incidence geometries one can associate another incidence geometry called its
Veldkamp space whose points are geometric hyperplanes [12].

Definition. Let � = (P,L, I) be a point-line geometry. We say that � has Veldkamp points
and Veldkamp lines if it satisfies the following conditions.

(V1) For any hyperplane A, it is not properly contained in any other hyperplane B.
(V2) For any three distinct hyperplanes A, B and C, A ∩ B ⊆ C implies A ∩ B = A ∩ C.

If � has Veldkamp points and Veldkamp lines, then we can form the Veldkamp space
V (�) = (PV , LV ,⊇) of �, where PV is the set of geometric hyperplanes of �, and LV is the
set of intersections of pairs of distinct hyperplanes.

By theorem 1, the incidence geometry Gn has Veldkamp points for n � 2. Now we give
the explicit form of geometric hyperplanes. To this end, let us introduce a quadratic form over
Vn whose linearization is the symplectic form 〈·, ·〉:

Q0(x) =
n∑

i=1

aibi, (22)

where x = (a1, b1, a2, b2, . . . , an, bn) ∈ Vn. It is easy to check that

Q0(x + y) + Q0(x) + Q0(y) = 〈x, y〉. (23)

It is also true that Q0(x) = 0 iff the Pauli operators representing x are symmetric matrices.
With every element p in Vn, we can associate a nondegenerate quadratic form

Qp(x) = Q0(x) + 〈p, x〉, (24)

whose linearized form is the same as that of Q0:

Qp(x) + Qp(y) + Qp(x + y) = Q0(x) + 〈p, x〉 + Q0(y) + 〈p, y〉
+ Q0(x + y) + 〈p, x + y〉

= Q0(x) + Q0(y) + Q0(x + y)

+ 〈p, x〉 + 〈p, y〉 + 〈p, x + y〉
= 〈x, y〉. (25)

We will use these quadratic forms to characterize points of geometric hyperplanes.
An important concept is the Arf invariant of a quadratic form over a Z2-linear space which

is the element of Z2 that occurs most often among the values of the form. It is not difficult
to check that the Arf invariant of Qx is Q0(x), where Q0 is a quadratic form with the Arf
invariant 0.

Lemma 4. Let n ∈ N + 1 be a positive integer, Gn = (P,L,∈) and p ∈ Vn be any vector.
Then the sets

Cp = {x ∈ P |〈p, x〉 = 0} (26)

and

Hp = {x ∈ P |Qp(x) = 0} (27)

satisfy (H1).

Proof. Since Cp is a projective subspace of co-dimension 1 (or 0 in the case of x = 0) in
PG(2n − 1, 2) it intersects every line in this projective space (not only the isotropic ones) in
either one or three points.

8
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Now let l = {a, b, a + b} ∈ L be a line in Gn. Since it has three points, we only have to
show that Hp intersects l in an even number of points. This is implied by

Qp(a) + Qp(b) + Qp(a + b) = 〈a, b〉 = 0. (28)
�

Clearly, C0 = P but all other sets appearing in lemma 4 are geometric hyperplanes. In
fact, the converse is also true, i.e. all geometric hyperplanes arise in this form.

Theorem 2. Let n ∈ N + 1, Gn = (P,L,∈), and H ∈ P a subset satisfying (H1). Then
either H = Cp or H = Hp for some p ∈ Vn.

Proof. We prove by induction. For n = 1 one can check that the 8 = 2 × 22 possible subsets
of P are indeed of this form. For n � 2 we can write n as the sum of two positive integers a
and b. Then Vn � Va ⊕ Vb and the points of Gn are

P = {pa ⊕ 0|pa ∈ Va \ {0}} ∪ {0 ⊕ pb|pb ∈ Vb \ {0}}
∪ {pa ⊕ pb|pa ∈ Va \ {0}, pb ∈ Vb \ {0}}. (29)

The first set in the union will be denoted by Pa, the second one by Pb, and the last one can
naturally be identified with Pa × Pb. The first two sets can be regarded as the point sets of
Ga and Gb, respectively. The latter two incidence structures arise as these points and the lines
contained in the appropriate point sets.

Now let H(a) = H ∩ Pa and H(b) = H ∩ Pb. Clearly, they satisfy (H1) in Ga and Gb,
so by the induction hypothesis they are either of the form Cpa

(Cpb
) or Hpa

(Hpb
) for some

pa ∈ Va (pb ∈ Vb). In any case, since every point in Pa is connected with every point in Pb,
the points in the intersections uniquely determine the set H:

H = H(a) ∪ H(b) ∪ (H (a) × H(b)) ∪ ((Pa \ H(a)) × (Pb \ H(b))). (30)

We have the following three cases (after possibly reversing the role of a and b):

(a) H(a) = Cpa
and H(b) = Cpb

. Then

H = {x ⊕ 0|〈pa, x〉 = 0} ∪ {0 ⊕ y|〈pb, y〉 = 0}
∪ {x ⊕ y|〈pa, x〉 = 〈pb, y〉 = 0} ∪ {x ⊕ y|〈pa, x〉 = 〈pb, y〉 = 1}
= {x ⊕ y|〈pa, x〉 + 〈pb, y〉 = 0}
= {x ⊕ y|〈pa ⊕ pb, x ⊕ y〉 = 0}
= Cpa⊕pb

. (31)

(b) H(a) = Hpa
and H(b) = Hpb

. Then

H = {x ⊕ 0|Qpa
(x) = 0} ∪ {0 ⊕ y|Qpb

(y) = 0}
∪ {x ⊕ y|Qpa

(x) = Qpb
(y) = 0} ∪ {x ⊕ y|Qpa

(x) = Qpb
(y) = 1}

= {x ⊕ y|Qpa
(x) + Qpb

(y) = 0}
= {x ⊕ y|Qpa⊕pb

(x ⊕ y) = 0}
= Hpa⊕pb

. (32)

(c) H(a) = Hpa
and H(b) = Cpb

. In this case, H would be

H = {x ⊕ y|Qpa
(x) + 〈pb, y〉 = 0}. (33)

Since a � 1 and b � 1, we can pick from Va and Vb two-dimensional symplectic
subspaces W 1 and W 2 which are direct summands in the appropriate subspaces. Then
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pa (pb) can be uniquely written as a sum of a vector p1 (p2) in W 1 (W 2) and one in its
direct complement. Clearly, H intersects W1 ⊕ W2 in

H ∩ (W1 ⊕ W2) = {x1 ⊕ x2|Qp1(x1) + 〈p2, x2〉 = 0}, (34)

and this set should be a geometric hyperperplane in theG2, whose points are P ∩(W1⊕W2).
But denoting the three points in P ∩ Wi with ai, bi, ci (i ∈ {1, 2}), one can write that

〈a1 ⊕ a2, b1 ⊕ b2〉 = 〈a1, b1〉 + 〈a2, b2〉 = 1 + 1 = 0 (35)

and

(a1 ⊕ a2) + (b1 ⊕ b2) = (c1 ⊕ c2), (36)

so these points form a line in G2, and

Qp1(a1) + 〈p2, a2〉 + Qp1(b1) + 〈p2, b2〉 + Qp1(c1) + 〈p2, c2〉
= 〈a1, b1〉 + 〈p2, a2 + b2 + (a2 + b2)〉 = 1 (37)

shows that an even number of points in this line belong to H which contradicts (H1). �

Given this algebraic characterization of points of different hyperplanes, it is easy to
express the sum A � B of any two geometric hyperplanes A and B.

Lemma 5. Let n ∈ N + 1, a, b ∈ Vn and Gn = (P,L,∈). Then the following formulas hold:

Ca � Cb = Ca+b

Ha � Hb = Ca+b

Ca � Hb = Ha+b.

(38)

Proof. Since all of the arising sets are defined as the zero locus of some Z2-valued function,
we only have to observe that

{x ∈ P |f1(x) = 0} � {x ∈ P |f2(x) = 0} = {x ∈ P |f1(x) + f2(x) = 0} (39)

holds.
Since 〈a, x〉+ 〈b, x〉 = Qa(x)+Qb(x) = 〈a +b, x〉 and 〈a, x〉+Qb(x) = Q0(x)+ 〈a, x〉+

〈b, x〉 = Qa+b(x), the statement follows. �

Now we are ready to prove that condition (V2) holds.

Theorem 3. Let n ∈ N + 3, and suppose that A,B,C are distinct geometric hyperplanes of
Gn = (P,L,∈) such that I = A ∩ B ⊆ C. Then A ∩ B = A ∩ C.

Proof. For C = A � B, we have seen that A ∩ B = A ∩ C = B ∩ C. We will show that
there is no other possibility, i.e. A ∩ B ⊆ C implies C ∈ {A,B,A � B}.

By lemma 5 and the properties of �, we may assume that A = Ca for some a ∈ P . We
have two possibilities as follows.

(a) B = Cb for some b ∈ P . Then I = {x ∈ P |〈a, x〉 = 〈b, x〉 = 0}, so
I ∪ {0} = (span{a, b})⊥ is the symplectic complement of the subspace spanned by a
and b. This means that I ⊆ Cv = v⊥ \ {0} implies v ∈ span{a, b}, or in other words, Cv

is one of A, B and A � B.
In order to show that we cannot find a v ∈ Vn such that I ⊆ Hv , pick two

points x, y ∈ I such that 〈x, y〉 = 1. It is possible since dim Vn � 6 when n � 3,
dim span I = dim Vn − 2 > dim Vn

2 therefore span I cannot be isotropic. Then x + y is also
contained in I because I ∪ {0} is a linear subspace in Vn and x �= y.

Qv(x) + Qv(y) + Qv(x + y) = 〈x, y〉 = 1 (40)

shows that {x, y, x + y} cannot be contained in Hv .

10
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Table 1. Geometric hyperplanes in the incidence geometry associated to the n-qubit Pauli group.

General form Number of points Copies

Cp where p ∈ Vn \ {0} 1
2 4n − 1 4n − 1

Hp where Q0(p) = 0 1
2 (4n + 2n) − 1 1

2 (4n + 2n)

Hp where Q0(p) = 1 1
2 (4n − 2n) − 1 1

2 (4n − 2n)

(b) B = Hb for some b ∈ Vn. Then Qb restricted to a⊥ is a quadratic form of the maximal
rank, and I ∪ {0} is its zero locus. Therefore, span I = a⊥, and it follows that if
I ⊆ Cv = v⊥ \ {0} then v ∈ I⊥ = span{a}.

If for some v ∈ Vn I ⊆ Hv , then

I = I ∩ Hb ⊆ Hv ∩ Hb ⊆ Hv � Hb = Cv+b, (41)

which means that the only possibilities are v = b and v = a + b. �

Remark. The statement is not true for n = 2. There the perp-sets of two commuting
operators intersect in a single line which is obviously contained in a grid whose intersection
with any of the two given perp-sets is a pentad [15, 16].

5. Automorphisms

Now that we have characterized all the geometric hyperplanes ofGn, it is convenient to calculate
how do automorphisms of Gn act on them. It is clear that every automorphism of Vn (i.e. a
symplectic transformation) induces one of Gn, and this group homomorphism is injective.
Conversely, an automorphism of Gn respects the linear structure by lemma 5 and preserves the
symplectic structure too, since it maps lines to lines. It follows then that Aut(Gn) = Sp(2n, 2).

We have three types of geometric hyperplanes. One of them is Cp where p ∈ Vn \ {0},
and the two other types are of the form Hp, where p ∈ Vn. The type of this depends on the
Arf invariant of Qp which in turn equals Q0(p) which we will also call the Arf invariant of the
hyperplane. The number of hyperplanes of each type is summarized in table 1.

Let Gn = (P,L,∈), where P = Vn \{0}. The action of Sp(2n, 2) on Vn induces an action
on the Veldkamp space of Gn. Since Sp(2n, 2) is generated by symplectic transvections, we
only have to calculate the action of these on the set of geometric hyperplanes. Let tp denote
the symplectic transvection determined by p:

tp : Vn → Vn; x �→ x + 〈p, x〉p. (42)

A well-known fact is that the inverse of tp is itself, that is, tp is an involution.
Another important property is that if 〈p, q〉 = 0 then tp and tq commute:

tptqx = tp(x + 〈q, x〉q)

= x + 〈q, x〉q + 〈p, x + 〈q, x〉q〉p
= x + 〈q, x〉q + 〈p, x〉p + 〈q, x〉〈p, q〉p. (43)

〈p, q〉 = 0 means that the last term is zero and the rest is symmetric in p and q.
Since tp is linear, in particular, it fixes the zero vector, and acts as a permutation of P too.

Being symplectic it permutes the elements of L too, and maps hyperplanes to hyperplanes.
The action on these is given by the following.

11
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Lemma 6. Let Gn = (P,L,∈) and p ∈ Vn. Then

tpCa = Ctpa

tpHa = Ha+(1+Qa(p))p.
(44)

Proof.

tpCa = {tpx|x ∈ Vn \ {0}, 〈a, x〉 = 0}
= {x ∈ P |〈a, tpx〉 = 0}
= {x ∈ P |〈tpa, x〉 = 0}
= Ctpa (45)

tpHa = {tpx|x ∈ Vn \ {0},Qa(x) = 0}
= {x ∈ P |Qa(tpx) = 0}
= {x ∈ P |Qa(x + 〈p, x〉p) = 0}
= {x ∈ P |Q0(x) + 〈p, x〉Q0(p) + 〈x, 〈p, x〉p〉 + 〈a, x + 〈p, x〉p〉 = 0}
= {x ∈ P |Q0(x) + 〈Q0(p)p + a + 〈a, p〉p + p, x〉 = 0}
= Ha+(1+Q0(p)+〈a,p〉)p. (46)

�

Remark. In particular, tp fixes Ca iff 〈p, a〉 = 0 and fixes Ha iff Qa(p) = 1.

It is well known that Sp(2n, 2) acts transitively on the set of pairs of distinct nonzero
vectors in Vn with a fixed symplectic product. This means that two hyperplanes of type Cp can
be in two different positions relative to each other.

Our aim is to identify the possible relative positions of two geometric hyperplanes of type
Hp. Clearly, the set

{{Ha,Hb}|a, b ∈ Vn, a �= b} (47)

splits to at least three invariant subsets under the action of Sp(2n, 2), namely,

{{Ha,Hb}|a, b ∈ Vn, a �= b,Q0(a) = Q0(b) = 0} (48)

{{Ha,Hb}|a, b ∈ Vn, a �= b,Q0(a) = Q0(b) = 1} (49)

{{Ha,Hb}|a, b ∈ Vn,Q0(a) �= Q0(b)}. (50)

We will show that Sp(2n, 2) acts transitively on each of these sets. This follows from the
following lemma.

Lemma 7. Let n ∈ N + 3, Gn = (P,L,∈) and a, b, f ∈ Vn three distinct vectors such
that Q0(a) = Q0(b). Then there exists an element in Sp(2n, 2) fixing Hf and swapping Ha

with Hb.

Proof. There are two possibilities according to the value of Qf (a + b).

(a) If Qf (a + b) = 0, then pick a point p in Ca+b ∩ Ha \ Hf . This is possible since
Ca+b � Ha = Hb �= Hf and (V2) holds. Now let q = a + b + p. Then since Hf is a
geometric hyperplane, a + b ∈ Hf and p /∈ Hf , it follows that the line {q, p, a + b}
intersects Hf in a + b and Qf (q) = 1.

12
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Also, we have that

Qb(a + b + p) = Q0(a + b + p) + 〈b, a + b + p〉
= Q0(a) + Q0(b) + Q0(p) + 〈a, p〉
= Qa(p) = 0. (51)

It is clear then by equation (44) that both tp and tq fix Hf, tpHa = Ha+p and
tqHb = Hb+q = Ha+p. It follows that tq tpHa = Hb. Since 〈p, q〉 = 0, tp and tq
are two commuting involutions, which implies that tq tp itself is an involution, and it
swaps Ha and Hb.

(b) If Qf (a + b) = 1 then by equation (44), ta+b fixes Hf and

Qa(a + b) = Q0(a) + Q0(b) + 〈a, b〉 + 〈a, a + b〉 = 0 (52)

implies that ta+bHa = Hb. �

Remark. This means also that Sp(2n, 2) acts 2-transitively (transitively on pairs) on its two
orbits of geometric hyperplanes of type H.

6. Veldkamp lines

Our considerations in the previous section show that there are two types of Veldkamp lines
incident with three C-hyperplanes and three types of lines which are incident with one
C-hyperplane and two H-hyperplanes. In this section we study the structure of these lines, i.e.
the pairwise intersections of geometric hyperplanes.

By lemma 7 we only have to consider five special cases. The first type of line in the
Veldkamp space of Gn we study is the one connecting Ca and Cb, where 〈a, b〉 = 0. Their
intersection contains points of the symplectic complement of span{a, b}. Since this subspace
is isotropic, the symplectic complement is isomorphic to Vn−2 ⊕ W1, where W 1 is a two-
dimensional vector space with an identically 0 bilinear form. Therefore, the intersection has
4n−1 − 1 points. The number of lines of this type is the same as the number of lines in Gn.

Similarly, when 〈a, b〉 = 1, then the intersection of Ca and Cb is also the symplectic
complement of span{a, b} minus the zero vector. But in this case the symplectic form which
is restricted to the complement is nondegenerate, meaning that the intersection as an incidence
geometry is isomorphic to Gn−1 which has 4n−1 − 1 points. Each two-dimensional symplectic
subspace in Vn gives rise to one such line; hence, the number of them is

(4n − 1) · 4n−1

3
. (53)

The next case is a line connecting two H-hyperplanes with Arf invariants equal to 0. By
lemma 7, we can choose any two such hyperplanes. For simplicity, we will work with H0 and
Ha, where a = I . . . IX = (0, 0, . . . , 0, 1). Now x ∈ H0 ∩ Ha implies that x ∈ Ca , so x is of
the form

x = (x1, x2, . . . , x2n−2, 0, x2n). (54)

The value of Q0(x) is independent of x2n and equals

Q0((x1, x2, . . . , x2n−2)) = x1x2 + · · · + x2n−3x2n−2, (55)

where Q0 also denotes a quadratic form on Vn−1, but this should not be a source of confusion.
As we are free to choose the value of x2n, it follows that the intersection contains

2
[

1
2 (4n−1 + 2n−1)

] − 1 = 4n−1 + 2n−1 − 1 (56)
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points where −1 is for excluding the zero vector. We have( 4n+2n

2

2

)
= 1

8
(4n + 2n)(4n + 2n − 2)

= 2n−3(2n + 1)(2n − 1)(2n + 2)

= 2n−3(4n − 1)(2n + 2) (57)

lines of this type.
For the line type connecting two H-hyperplanes with different Arf invariants, we choose

H0 and Ha, a = I . . . IY = (0, 0, . . . , 0, 1, 1) as the representative. Now if x ∈ H0 ∩ Ha then
x ∈ Ca , so x = (x1, x2, . . . , x2n−2, x2n−1, x2n−1). This implies that Q0(x) equals

Q0((x1, x2, . . . , x2n−2)) + x2n−1, (58)

meaning that we can choose the first 2n − 2 coordinates freely, and this uniquely determines
x2n−1. Moreover, since the last two coordinates do not contribute to the value of the symplectic
form of two such vectors, it follows that the intersection is again isomorphic to Gn−1 as an
incidence geometry. But this time it is embedded differently into Gn since the span of its points
is (2n − 1)-dimensional unlike the symplectic complement of a symplectic two-dimensional
subspace whose span is 2n − 2 dimensional.

A pair of H-hyperplanes with different Arf invariants can be chosen in
1
2 (4n + 2n) · 1

2 (4n − 2n) = 1
4 (2n)2(2n + 1)(2n − 1)

= 4n−1(4n − 1) (59)

ways.
The last case is a line containing two H-hyperplanes with Arf invariant 1. Our choice

is a = I . . . IY = (0, 0, . . . , 0, 1, 1) and b = I . . . IXY = (0, . . . , 0, 1, 1, 1), and the two
hyperplanes are Ha and Hb. Then for x ∈ Ha ∩ Hb, we have that x ∈ Ca+b meaning that
x = (x1, x2, . . . , x2n−4, 0, x2n−2, x2n−1, x2n) Now Qa equals

Q0((x1, x2, . . . , x2n−4)) + x2n−1 + x2n + x2n−1x2n, (60)

which does not depend on x2n−2. If any of the last two coordinates is 1, then the sum of the
last three terms is 1, so we have 1

2 (4n−2 − 2n−2) possibilities for the values of the first n − 4
coordinates. On the other hand, if both x2n−1 and x2n are 0, then we have 1

2 (4n−2 + 2n−2)

choices for the first n − 4 coordinates. In any case, we are free to choose the value of x2n−2

except for the case of x = 0, so the intersection has

2
(
3 1

2 (4n−2 − 2n−2) + 1
2 (4n−2 + 2n−2)

) − 1 = 4n−1 − 2n−1 − 1 (61)

points. The number of lines of this type is( 4n−2n

2

2

)
= 1

8
(4n − 2n)(4n − 2n − 2)

= 2n−3(2n − 1)(2n + 1)(2n − 2)

= 2n−3(4n − 1)(2n − 2). (62)

The above results are summarized in table 2.

7. Special cases

After the discussion of general properties of the incidence geometries of the n-qubit Pauli
group, we turn to some special cases. As was already mentioned, G1 consists of three points
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Table 2. Veldkamp lines in the incidence geometry associated to the n-qubit Pauli group.

Hyperplanes of type

Ca Ha, Q0(a) = 0 Ha, Q0(a) = 1 Intersection size Number of copies

3 0 0 4n−1 − 1 1
3 (4n − 1)(4n−1 − 1)

3 0 0 4n−1 − 1 1
3 4n−1(4n − 1)

1 2 0 4n−1 + 2n−1 − 1 2n−3(4n − 1)(2n + 2)

1 1 1 4n−1 − 1 4n−1(4n − 1)

1 0 2 4n−1 − 2n−1 − 1 2n−3(4n − 1)(2n − 2)

and no lines. This is not very interesting, as all proper subsets arise as geometric hyperplanes
and intersections of those are all subsets with at most one point.

The n = 2 case is rather peculiar as G2 is the unique generalized quadrangle of order
2 having 15 points and 15 lines. It was already studied in detail in [16, 17]. Our present
results can be regarded as a generalization of this case. It is interesting to note that in this
case an H-hyperplane with Arf invariant 1 consists of five points reaching the lower bound of
lemma 1. These do not have any lines, and hence are ovoids, corresponding to sets of mutually
anticommuting Pauli operators.

The H-hyperplanes with Arf invariant 0 contain nine points and six lines forming a
subquadrangle GQ(2, 1) also known as a grid. On the quantum information theoretic side
these are Mermin squares which are used for a simplified proof of the Kochen–Specker theorem
[18].

For n = 3, the incidence geometry Gn has 63 points and 315 lines. The H-hyperplanes
with Arf invariant 1 here have 27 points and 45 lines. These hyperplanes as incidence
geometries are isomorphic to the generalized quadrangle GQ(2, 4). Fixing one of them, all
of its geometric hyperplanes can be obtained by intersecting it with every other hyperplane
in G3. They are GQ(2, 2)-s and perp-sets containing 11 points [19]. The importance of this
object was already known in the context of the black hole analogy [8]; the novelty here is the
natural description in terms of three-qubit operators.

It is also interesting that keeping a certain set of 63 lines of G3 one can obtain the split
Cayley hexagon of order 2 [7]. Since keeping all points and deleting lines weaken the condition
of being a geometric hyperplane, all hyperplanes of G3 can also be viewed as hyperplanes of
the hexagon, but the latter contains many more types of hyperplanes [20]. From the physical
point of view, there are some hints that the Cayley hexagon might have a role in understanding
the connection between the three-qubit Pauli group and the E7(7)-symmetric entropy formula
of black holes in N = 8 D = 4 supergravity.

We also have two special geometric hyperplanes in Gn for any n if we fix the representation
of the n-qubit Pauli group as tensor products of the usual Pauli matrices. These are H0 and
HYY...Y . As was already mentioned, the first one consists of Pauli operators with symmetric
matrices as representatives. The latter one contains the operators built from an even number
of nontrivial (i.e. X, Y, or Z) matrices. These n-qubit operators are exactly the self-dual ones
with respect to the Wootters spin-flip [21] transformation (apart from the identity matrix).

For n = 3, these Wootters self-dual Pauli operators form an H-hyperplane giving rise to
a GQ(2, 4) underlying the geometry of the E6(6) symmetric entropy formula for black holes
and black strings. Of course, this hyperplane is just one from the aforementioned 28 possible
ones with Arf invariant equals 1. They also have the structure of a GQ(2, 4). Clearly, all
of these hyperplanes can be used to describe the same E6(6) symmetric black hole and black
string entropy formula, but with the points having different noncommutative labelings. This
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situation can be regarded as the finite geometric analog of the standard usage of different local
coordinates for the underlying manifold in (pseudo)Riemannian geometry. As also emphasized
in our recent paper [8], the important novelty here is the intrinsically noncommutative nature
of these coordinates. Using the unified framework as developed in this paper the mathematical
and physical implications of these observations are certainly worth exploring further.

8. Conclusion

We have associated a point-line incidence geometry to every n-qubit-generalized Pauli group,
from which the group can fully be recovered. This contains points and lines of a symplectic
polar space of rank n and order 2 which describes the commutation relations of the Pauli
group [4].

For n � 3, this incidence structure has a Veldkamp space in the stronger sense which
enables us to identify distinguished subsets of the group independently from its representation.
These are the geometric hyperplanes (Veldkamp points) and the intersections of pairs of
hyperplanes (Veldkamp lines).

This formalism also creates a nice unifying picture of finite geometric results in connection
with the black hole analogy. Namely, both the generalized quadrangle with (2, 4) parameters,
which is intimately connected to the E6(6)-symmetric black hole entropy formula [8], and the
split Cayley hexagon of order 2, which is related to the E7(7)-symmetric black hole entropy
formula in N = 8 D = 4 supergravity [7], can be found as a subgeometry in the incidence
structure describing the Pauli group of three qubits.
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